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Abstract

Large scale surveys usually employ a complex sampling design, and as a

consequence no standard methods for estimation of the standard errors associated with

the estimates of population means are available. Resampling methods, such as jackknife

or bootstrap are often used, with reference to their properties of robustness and reduction

of bias. We examine a method based on variance component models as an alternative

to the jackknife procedure used for calculation of the standard errors for the

subpopulation means of proficiency scores in a large scale survey of education in the

U.S.A.

Keywords: Efficiency; Jackknife; Sampling design; Standard errors; Variance

components.
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1. Background and motivation

The National Assessment of Educational Progress (NAEP) is a large scale survey

of U.S. primary and secondary schools. It employs a stratified three-stage clustered

sampling design for students in various age/grade groups, and a complex partially

balanced incomplete block design for the administered items. The item administration

design enables collecting information about a large number of items without

administering each item to every individual in the sample. The questionnaire items are

divided into content areas (academic subjects) and, within subjects, into attitude and

cognitive items. A common block of background items is administered to all the

individuals.

For each content area an underlying proficiency (ability) scale is defined, and the

scores on this scale are estimated from the responses to the cognitive items for all the

students in the sample who have been administered at least one block of items from the

content area. The proficiency scale is defined in such a way as to have, theoretically, the

normal distribution with mean 250 and standard deviation 50. Each item has a limited

number of response options, and for each cognitive item one response is correct. Results

of the survey are published in the form of 'Summary Tables' which contain the sample

(Weighted) means of these proficiency scores, and the estimated standard errors for these

means, for each combination of attitude item and response to it, cross-classified by the

demographic background variables.

For example, the 1983-84 survey of 13-year-olds used a sample of approximately

31,000 students, each of whom was administered at least one of the 13 blocks of items

pertaining to reading skills. For example, one of these 'reading' blocks (block N) was

6
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administered to 3,078 students. To the attitude item No. 4 of this block 2,139 students

(approximately 70%) chose the response option A. One entry of the 'Summary Tables'

contains an estimate of the mean proficiency of these students, and an estimate of the

associated sampling variance. Most attitude items have five response options, and so the

estimate of a typical entry in the Summary Tables is based on a small proportion of the

total sample.

The sampling design involves 32 strata, within each of which a pair of primary

sampling units (PSU's) is selected, with replacement. Schools are sampled within each

selected PSU, and students are sampled within each selected school. The sampling

procedures at each stage (PSU, school, student) are conditionally independent, given

selection of the units at the higher level of aggregation. The (conditional) sampling

probabilities are unequal, so as to oversample certain minority groups. The a priori

(base) sampling weights were adjusted after the sampling procedure for non-response,

and extremely large weights were trimmed so as to reduce the influence of the associated

observations. Finally, the weights were adjusted by a process called poststratification to

conform to certain population totals. We refer to these adjusted weights as poststratified

weights.

Let YhuK be the score of student K in school J within primary sampling unit

(PSU) I of the stratum h. The population mean is defined as

Y = EhLIK YhUK Ehu NhU

7
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where Nhu is the number of students (of a particular age, or in a given grade) in the

school (h, I, J). The mean for a subpopulation is defined similarly to (1), with Nhu

replaced by the counts of students belonging to the subpopulation, within schools.

In NAEP the traditional ratio estimator for the (sub-) population means is used:

Y '--- Ehijk Yhijkwhijk / Ehijk whijk, (2)

where Whijk are the poststratified weights, and the summations are over all the students

in the sample and (if applicable) in the subpopulation. The sampling variance associated

with this estimator is estimated by a jackknife method: For each stratum h = 1, ..., H

the h-pseudosample is created from the original sample by replacing the data for the first

PSU in the stratum with the data from the other PSU in the stratum. The jackknife

estimator of the sampling variance for the ratio estimator (2) is defined as the corrected

sum of squares of the pseudosample means:

62 = Eh GI D2 (3)

where yh is the weighted mean for the h-pseudosample, with its weights adjusted for non-

response in this pseudosample. The ratio estimator (2) itself is not jackknifed since it is

believed to have satisfactory properties.

The jackknife procedures are computationally very extensive and cumbersome

because they require calculation of the sampling weights adjusted for each jackknife

0
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pseudoanalysis associated with a stratum. In the case of NAEP the jackknife estimates

of the standard errors for the population means, and for certain subpopulation means in

particular, are known to have very poor sampling properties (Johnson, 1988).

S,weral researchers have proposed model-based estimation procedures for data

from surveys that involve hierarchies (Malec & Sedransk, 1985, Aitkin & Longford 1986,

and Battese, Harter & Fuller, 1988). The common feature of these variance component

methods, considered from either a Bayesian or a likelihood prospective, is the modelling

of the correlation structure of the observed data, or equivalently, the decomposition of

the variation due to the levels of hierarchy induced by the sampling design.

The selected clusters at each level of the nesting hierarchy are a random sample

from the respective populations of clusters (PSU's, schools, students), and so it is natural

to represent the individual proficiency scores by the variance component model

Yhijk = an + bni Chij ehijk (4)

where the random terms b, c, e, form mutually independent samples from the normal

distributions with means 0 and variances cri , cri and cri , respectively. For the stratum

means we consider two complementing assumptions:

A. They are unknown constants (fixed between-stratum differences).

B. They form a random sample from N(ix, ai) (random between-stratum

differences).
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The strata are set prior to sampling, and so the assumption A. is more appropriate. The

assumption B. is attractive in that the 32 parameters ah are replaced by iust two,µ and

cri. The original definition of the strata contains elements of arbitrariness, and that gives

some credence to the assumption B.

Jackknife is a very general method, and it involves essentially no parametric

assumptions. On the other hand, variance component methods are likely to be superior

when the associated assumptions are satisfied, but in general they are much less robust

than the jackknife procedures. The purpose of our study is to explore how and to what

extent the jackknife procedures used in NAEP could be replaced by computationally

more efficient methods, based on variance component analysis, that do not involve

resampling.

The paper is organized as follows: In Section 2 we describe the datasets used for

the study and compare the results of the jackknife and variance component analyses. In

Section 3 the performance of the jackknife analysis is compared with the variance

component analysis by means of two simulation studies. Artificial data were generated

according to the variance component model (4), in order to evaluate the extent of the

largest possible loss of efficiency in the jackknife procedures. Technical details are given

in Section 4 and in the Appendix.

2. Data, procedures, and summary of results

From the 1983-84 assessment of reading data for the 13-year-olds who had been

administered the block N of reading items were extracted. The jackknife procedure

0
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used in the operation of NAEP was replicated and the variance component models (4),

with the assumptions A. and B., fitted for the data corresponding to the students with a

specific response to a selected attitude item. We discuss the results for a representative

set of item-by-response combinations, given in Table 1, that were selected in such a

manner as to cover the entire range of the proportions of students that occur in the

Summary Tables (approximately 10% - 100%).

TABLE 1 HERE

For estimation of the parameters in the variance component model (4) a

modification of the Fisher-scoring algorithm of Longford (1987), adapted for unequal

sampling weights, was used. The jackknife and variance component estimates of the

standard errors for the estimates of the means are given in Table 2.

TABLE 2 HERE

The standard errors for the means using the variance component model with the

assumption of fixed stratum-differences (A.) are very close to the jackknife standard

errors. The largest discrepancy occurs for the case of 'all students', where the variance

component standard error is about 10% higher. Assuming random stratum-differences

leads to substantial overestimates of the standard errors, almost 30% in the case of 'all

students'. The two variance component models result in identical estimates of the

11
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standard errors for the cases 6B (response B to the item 6) and 9C for which the estimate

of the stratum-level variance (y4 is equal to 0.

For variance component analysis we use the parametrization

(al, T2, T3, T4),

where Th lia2h/ (721 is the square root of the ratio of the h-level and the student-level

variances. Thus, the variance of an observation is equal to c4(1 + + + 7i). The

=stimates of the variance components are given in Table 3. These results indicate that

the between-school variation (within-PSU, or level 2) accounts for between 10% (all

students) and 20% (9C) of the total variation. The between-PSU (level 3) variance is

substantially smaller.

TABLE 3 HERE

The estimates of the variances for the model assumptions A. and B. are identical

except that the estimates for the between-stratum variation in model B., are replaced by

the 31 stratum-contrasts for model A.

The main implication of these results is that the standard errors of the

(sub-)population means obtained from variance component model fits can be used

instead of the computationally more intensive jackkn ife procedures. The main advantage

12
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of the variance component approach is that no resampling weights need to be calculated,

and so the process of reporting of the results could be considerably streamlined.

3. Simulations

In this Se :tion we discuss the issue of efficiency of the jackknife estimation method.

For the model assumptions (4) the direct maximum likelihood method is asymptotically

fully efficient, and so it is reasonable to assume that the relative efficiency of the

jackknife and variance component methods for model (4) provides the most unfavorable

comparison for the jackknife.

3.1 Jackknife vs. variance components

Data were generated according to the model (4) with the assumption of fixed

stratum-differences. Since all the estimators of the variance components are translation

invariant, our results are unaffected by the actual choice of the stratum-differences, and

therefore they can be set identically to zero. In order to simplify the study farther, we

generated the following stratum/PSU/school design: For a given data set design (such

as 4A, see Table 1) we generate a 'simulation' design by rounding the within-school totals

of weights these integers then represent the numbers of students within the schools in

the simulation design. The design at the higher levels, i.e., the clustering of schools

within PSU's and the pairs of PSU's within strata, is left intact. Equal 'simulation'

weights are assigned to each observation.
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We .report only the results for the imputed values of the variance components 1.

(students), 0.12 (schools), and 0.03 (PSU's); they are representative of the results for

other realistic values of the variance components. The model (4) and all the estimators

used are invariant with respect to linear transformations, and therefore the

student-variance can be set to an arbitrary positive value and the population mean to any

real value. The other two vat zInces are close to the values of the estimates in the real

data. Two hundred replicates of the simulation datasets based on the data for all the

students and for the combination 4A were generated. In order to informally confirm the

generalizability of the results the variance components for schools in the range 0.04 - 0.20

and for PSU's in the range 0.01 - 0.10 were also used.

The results of the simulations indicate that the jackknife estimator of the mean does

not provide any improvement over the arithmetic average, but the variance component

estimator is appreciably more efficient. The variance component estimator for the

standard error of the mean is far superior to its jackknife counterpart. The relevant

results of the simulation study are summarized in Table 4.

TABLE 4 HERE

The Table contains three pairs of reA.vs, corresponding to the arithmetic mean (i.e.,

assuming simple random sampling), the variance component method and the jackknife

method. Within each pair the first row corresponds to the estimator of the mean and the

second to the associated estimator of the standard error. The row 'VC.GM.' represents

14
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the standard error of the arithmetic mean under the assumption of the variance

component model. The bias of each estimator of the standard error for the mean can

be assessed by comparing the mean of the model- Dased estimates for the standard error

with the sampling standard deviation of the corresponding estimates for the mean. For

example, for the 'all students' dataset the sampling standard deviation of the ordinary

mean (0.0371) is 1.87 times higher than the average square root of the mean square

errors (.0198). The corresponding ratio for the dataset 4A is 1.67.

The jackknife estimates of the mean are closer to the ordinary means than the

variance component estimates. The jackknife estimator of the standard error for the

mean has very little bias (compare mean of JK.SE. with the sampling standard deviation

of JK.M.), and it also estimates the sampling standard deviation of the ordinary mean

(G.M.) without any observable bias. The variance component estimator for the sampling

standard deviation of the ordinary mean (VC.GM.) overestimates the sampling standard

deviation of the ordinary mean by about 4%.

The variance component estimator for the mean (V.C.M.) is appreciably more

efficient than the jackknife estimator. Its sampling standard deviation is lower than the

sampling standard deviation for the jackknife or the ordinary mean by 9% (all students)

and 7% (4A). Note however, that the estimate of the sampling standard deviation for

the variance component mean is biased (compare the mean of VC.SE with the sampling

standard deviation for the V.C.M.), it has a positive bias of about 6% for both data sets.

The sampling standard deviations for the variance component estimators are

substantially smaller than their jackknife counterparts. The sampling standard deviations

15
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for the VC.SE. and VC.GM. are about 33% (all students) and 20% (4A) smaller than the

corresponding values for JK.SE.

We conclude that, contingent on appropriateness of the variance component model

(4), estimation of the mean could be moderately improved (i.e., lower mean squared

error) by application of variance component methods, but substantial improvement in the

sampling properties of the estimates of the associated standard errors would result. The

additional benefit would be that the resampling weights could be dispensed with.

3.2 Lumpy data

The Summary Tables contain a large number of entries related to subpopulations,

such as minorities, which constitute only a small proportion of the target population, and

they may be very unevenly distributed across the strata. The standard errors obtained

by the jackknife procedures are subject to substantial sampling variation, and their

estimation is probably very inefficient (Johnson, 1988). On the other hand the asymptotic

properties of the maximum likelihood estimators using the variance component models

may not hold for small datasets.

In order to compare the jackknife and variance component methods for such 'lumpy'

data we have generated several data sets from the artificial dataset of 'all students' by the

following two-stage sampling design:

16
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1. For each stratum generate a value p1 from U(0.2, 0.5) (uniform distribution

on the interval 0.2 - 0.5). Then, for the schools in the stratum, include the

whole school in the dataset with (stratum-specific) probability p1.

2. For the included schools: For each school generate a value p2 from U(.1,

and include a student from the school in the dataset with (school-specific)

probability p2.

We discuss the results for three such datasets, containing 368 students in 98 schools,

329 students in 109 schools and 284 students in 85 schools, respectively. In thesedatasets

between 8-12 PSU's and 1-3 strata were not represented at all. For illustration, the

nesting design for one of these datasets is given in Table 5; most PSI "s are represented

by fewer than 10 students, although 5 schools have 10 or more students in the dataset.

TABLE 5 HERE

The proficiency scores were generated by the variance component model (4) with the

variances al = 1., sr4 = 0.12, cri = 0.03 and o4 = 0, and mean 12, = 0. Results of the

simulation study using 200 replicates are given in Table 6. Table 6 has the same format

as Table 4, but in addition it contains summary statistics for the jackknife and variance

component estimators of sampling variance (see (5) below). We see that the mean

squared error (M.S.E.) is biased and the jackknife estimate of the standard error agrees

17



www.manaraa.com

15

with the sampling standard deviation of both the jackknife and the ordinary mean

estimators. The variance component estimator of the mean is only marginally more

efficient.

The variance component estimator of the standard error for the mean is more biased

than the jackknife estimate, but its sampling standard deviation is about twice as small

as that of the jackknife.

TABLE 6 HERE

The number of degrees of freedom associated with the estimators of the standard

error can be estimated by the formula

2(estimate of the variance)2
sampling variance of the squared standard error (5)

derived by matching the moments of the x2 distribution. These value are given in Table

6. The variance component estimator of the standard error has 35-40 more degrees of

freedom than its jackknife counterpart. Note that in the jackknife 31 degrees of freedom

is the upper limit for any data set.

We conclude that in small and lumpy datasets the variance component estimator of

the standard error for the mean is likely to be much more efficient than the jackknife

estimator probably even in presence of features that to a moderate extent violate the
assumptions of the variance component model.

18
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4. Computational details

In the jackknife analysis we define a pseudosample corresponding to each stratum,

and carry out the 'basic' analysis for each sample. in our case the basic analysis consists

of calculation of the weighted mean (2), and the pseudosample for stratum h is generated

from the original data set by deletion of the first PSU of the stratum and replacing it with

the second PSU of the stratum, with unaltered sampling weights. The sampling weights

are then adjusted for poststratification. Let the weighted mean of the pseudosample h

be yh , and the weighted mean for the original data set y. The jackknife estimator for

the mean (1) is given by

= En {Fyn (H 1)i)

(H is the number of strata, 32), and the sampling variance of this estimator is estimated

by (3). For further details we refer the reader to Beaton et al. (1988), Ch. 14.2.

The Fisher scoring algorithm for variance component analysis requires formulae for

the Jacobian and the expectation of the Hessian associated with the estimated

parameters. For easier description we consider first the case of equal weights. The

log-likelihood for a set of observations with equal sampling weights is given, apart from

an additive constant, by the formula

-21og = log det(V) + et/4e,

where V is the variance matrix for the observations and e = y - 12, is the vector of

residuals. The determinant and the inverse of the variance matrix can be evaluated

efficiently, and without numerical inversion of any matrices by the recursive algorithm

described in Longford (1987) where the formulae for the Jacobian and Hessian are

derived. Details are given in Appendix. The computational procedure is based on the

counts of students within schools, the within-school totals of proficiencies and the sample

total of squares of proficiencies. The weighted version of the algorithm uses the same

formulae, with the counts of students replaced by totals of weights, the totals of
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proficiencies by the corresponding weighted totals and the sum of squares of proficiencies

by the weighted sum of squares. The sampling weights are normalized (multiplied by a
constant) so that the sample total of the normalized weights is equal to the number of
students in the sample.

The adopted parametrization has the advantage that the estimate of the elementary

variance al is obtained at each iteration by setting the Jacobian to zero:

2 a(log X) /a4 = -n/cri + elWlefol = 0,

where W = cri V. Note that in the T-parametrization W does not depend on ai .

Instead of the variance ratios T2, '4 and Ti their respective square roots, T2, T3 and T4, are

estimated; The Jacobian and Hessian are adjusted by the chain rule. The main
advantage of estimating (ratios of) standard deviations instead of (ratios of) variances is

that negative estimates of the variances are avoided. Also, the standard errors obtained
from the inverse of the estimated expected information matrix are easier to interpret
because negative standard deviations in a confidence interval correspond to positive
variances.

In the model (4) the constantµ can be replaced by a linear predictor, such as one
allowing different within-stratum means. In general, addition of an explanatory variable

will reduce the variance components (or leave them unchanged). In the model with
random strata a variable defined for strata will leave the PSU-, school- and student-level

variances unchanged, and can reduce only stratum-level variance. The stratum factor
(categorical variable with 32 categories) will saturate the stratum-level variance, and will
result in a zero stratum-level variance component. Thus the overall mean in the model
(4) with fixed stratum-differences can be estimated by applying the model (4) with

random stratum-differences, and then setting the stratum variance to zero. Direct
estimation of the 32 stratum-means by the Fisher scoring method would involve iterative

inversion of 32 x 32 matrices, a substantial burden compared to the estimation of the
variance components. As an alternative the ordinary within-stratum means could be
imputed for them in variance component estimation.
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5. Summary

The reported study has demonstrated that the computationally extensive procedures

based on the jackknife method can be replaced by variance component methods which

do not involve resampling. The differences between the jackknife and variance

component-based estimates of the (sub-) population means are of no practical importance

since they are comparable to rounding errors. For small data sets (with 1000 or fewer

subjects) the jackknife and the variance component-based estimates of the standard errors

for the corresponding estimates of population means are almost identical, but for

subpopulation means the jackknife standard errors are substantially less efficient than

their variance component counterparts. For larger data sets some differences arise, but

they cause no noticeable changes in the Summary Tables. The efficiency of the jackknife

and variance component methods can be compared only on simulated data sets, such as

those generated by a variance component model. The simulation study described in

Section 3 provides evidence that the jackknife estimator for the standard error of the

estimate of the mean is substantially less efficient than its variance component

counterpart. Small proportion of this loss can be attributed to the difference in efficiency

of the jackknife and variance component estimators of the mean. The ultimate decision

to use variance component methods should be based on the predicted (guessed) impact

of the features of the data not accounted for by the variance component models, such as

the nature of the poststratified sampling weights, and possible variation of the variance

components across the strata. The impact of these features in the analyses of the studied

data sets appears to be ignorable, but only a study extended to the entire variety of

dataset designs involved in NAEP could arbitrate whether these features can be ignored

throughout, and the jackknife resampling weights made obsolete. The gain in efficiency

by using variance component analysis is most striking in small 'lumpy' datasets because

the jackknife estimator of the standard error ignores the within-PSU information.

The additional information provided by the variance component analysis consists of

the estimates of the variance components. The school-level variance is of primary

interest; it provides a description of school heterogeneity. Future alterations in the

design of the entire survey could be easier to plan, with optimality of inference as a goal,

2 1
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and some results, such as the standard errors for population means, could be predicted

prior to data collection using past (or imputed) values of the variance components.
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APPENDIX

Fisher scoring algorithm for variance component estimation

Suppose the observations for the subjects (students) are in lexicographic order, so

that their variance matrix V is block-diagonal and equal to

V = alVir = al(I + T22.1(2) 1.23.0) + Tiro) (A.1)

where all the matrices have sizes n x n, I is the unit matrix and JO)), p = 2,3,4, are the

respective incidence matrices for schools, PSU's and strata; the element (r1, r2) of J(P) is

equal to 1 if the students r1 and r2 belong to the same unit at the level p, and is equal to

0 otherwise. Fixed stratum-differences correspond to = 0. Let 14 , 12), 1V) and 1

denote the respective n x 1 indicator vectors for a school, a PSU, a stratum, and for the

whole sample, so that

j(2) = Etii 1(2) 1(2)Tj hij hij
JP) = Ehi 1(3)T j(4) Eh 144) 1114)T,

= , = E, i(3), and 1 = Eh g4). (A.2)

In order to simplify and streamline the notation we will use the symbol E(p) for the

summation over all units at the level p, and the dot notation; for example,

j() = E 1())1(0T.

The log-likelihood for the model (4) is given by the formula

-21og = n log al + log det(W) + eTVV-le/crl (A.3)
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where e = y is the vector of residuals, i.e., the differences of the observed and model

values. The vectorµ may vary across the observations, e.g., related to a set of
explanatory variables by a linear formula, AL = Xp, where X is a design matrix of known

constants, and p a vector of (known or unknown) location parameters. In most cases we

consider the case of constant predictor AL ( = µ 1) or stratum-specific means Atli.

The estimate of she elementary-level variance is obtained by setting the derivative

of (A.3) with respect to al to zero:

- eTW1eM = 0,

which has, for a given W, the unique solution oi = eTWIe/n.

The first partial derivatives with respect to ri2 p = 2,3,4, are equal to

a(log A) /arp2 = -1h E 11(.0TW11(3) - (eTW11()))2/(4), (A.4a)

and the expectations of the second derivatives (q p) are

E{a2log 1/arprq21 = -1/2 tr{J(P)W1P)W1} = -1h E E (14-q)TWI1(P))2 , (A.4b)
(plq)

where the double summation is over all units f at the level q and all its subunits g at the
level p.

The maximum likelihood estimator for the regression parameters is given by the
generalized least squares formula

x Tw 1 x )-1 xTw

where X is the (regression) design matrix, E(y) = Xp. For the case of no explanatory
variables we have the estimate of the grand mc n

oTwilyi frwly

2.4,

(A.5)
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with the information a? 1TW1 1 .

Since W is a matrix of large size it is important to have efficient algorithms for

computation of expressions involving W'. We define W1 = I and

W = W + T2 j(P)p1 p

p = 2,3,4, so that W4 = W. For the inverses of these matrices we have the recursive

formula

Isr-1 vv-1 yr' E {i(y) 1(01. rp2/(1 + rp2 1(0v c_111(0)} (A.6)"P "p-1 p-1

We define

and

(p)

C(P) = I.Pirw-p1_11(P)

E(P) = eTW-p_111(0, (A.7)

where the dot stands for a unit at the level p, and

C 1TW11, E =

We have C.P) = 11(2) (number of students from school in the sample), and

= Ek Chip, (sum of the residuals within school hij). The inversion formula (A.6)

implies the identities

Do) = E D(? /(1 + T2C(2))hi j Flo 2 -ij

DV) = ED2)/(1 + T3c2)),
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and

D = Eh Df,4)/(1 '40,4)) , (A.8)

where D stands for either C or E.

It is easy to show that

and

4

log det (W) = E E log (1 + TD2CP))
p=2 (p)

4

irwie E E {E(3)}2 Tp2/(1 ,rp2 c(.0)

P=2 (P)

(A.9)

(A.10)

These formulae enable efficient calculation of the log-likelihood (A.3). All the quadratic

forms required for (A.4a), (A.41)) and (A 5) can be calculated directly from the constants

CAP) and EP) using (A.6). The partial derivatives with respect to the square roots of the

variances are calculated from (A.4a) and (A.4b) using the chain rule.

The Fisher scoring algorithm is an iterative procedure, and as such it requires initial

values for all the estimated parameters. For the regression parameters (the population

mean) the ordinary least squares (arithmetic mean) provides a suitable initial solution,

and for the variance components any non-iterative procedure which provides positive

values is suitable. We have used a naive moment estimate which in the models fitted

turned out to have values between 50-200% of the maximum likelihood estimate. The
Fisher scoring aigorithm required between 6-12 iterations. The iterations were
terminated when both the change of the -2 log-likelihood and of each 1.p were smaller

than 104.

The estimator of the sampling variance of the arithmetic mean under the variance

component model (VC.GM. in Table 4) is equal to 1TV1/n2; its evaluation is
straightforward using (A.1).
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Adaptation for sampling weights.

Formally, the variance matrix V in (A.1) can be replaced by

V = of H1/2WH1/2,

where H is a diagonal matrix of sampling weights. All the formulae (A.4) - (A.8) carry

over directly after redefining the within-school scalars in (A.7) as

and

C(2) = Ek Hhi j hijk

Eh(2 Ek eij) hijHk hijk (A.11)

An iteration of the algorithm starts with the scalars (A.11) from which the level-3 and

level-4 totals C(3)' E(3), C(4), and E(4), as well as sample totals C and E are calculated using

(A.8). From these scalars the items for the Jacobian and Hessian of the Fisher scoring

algorithm are calculated using (A.6).

27
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Table 1. The data sets used in the study, with numbers of students and schools.

Item Response Students Schools

6 B 309 225

9 C 560 299

5 E 1,038 325

8 A 1,312
._.

341

4 A 2,240 379

All Students 3,076 392

2



www.manaraa.com

27

Table 2. Comparison of the jackknife and variance component estimates.

The means from variance component analysis are quoted only for model A.;
for model B. they differ by less than .0005.

Item-
Response

JACKKNIFE
VARIANCE COMPONENT

Mean

St. Error

Mean St. Error A. B.

6 B 250.76 1.694 250.98 1.685 1.685

9 C 257.19 1.768 257.22 1.730 1.730

5 E 264.82 1.265 264.39 1.272 1.664

8 A 252.42 1.252 252.08 1.241 1.388

4 A 254.81 1.263 255.12 1.299 1.630

All Students 253.38 1.046 253.51 1.154 1.350

Key: A. - fixed stratum differences

B. - random stratum differences

U
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Table 3. Estimates of the variance components.

The first line in every cell contains the estimate of the variance, the second

line the square root of this estimate, and the third line (in parentheses) the

standard error for the square root.

Case
a?

(students)
li

(schools)
73

(PSU's)
'ri

(strata)

9.83 .1428 .0000 .0000

6B 3.136 .3379 .0000 .0000

(.0736) (.1921) (.1919)

10.28 .2203 .0083 .0000

9C 3.206 .4693 .0909 .0000

(.0757) (.2074) (.1925)

10.45 .1575 .0000 .0287

5E 3.237 .3968 .0000 .1693

(.0512) (.2327) (.0634)

10.39 .1414 .0076 .0093

8A 3.223 .3761 .0870 .0995

(.0483) (.14E0) (.0959)

10.94 .1457 .0332 .0286

4A 3.308 .3817 .1823 .1692

(.0483) (.1480) (.0959)

11.55 .1223 .0234 .0136

All
students

3.398 .3497 .1530 .1168

(.0319) (.0628) (.0672)
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Table 4. Results of the simulation study for the 'all students' and the 4A design.

Sampling means and standard deviations for various estimators of the mean

and of the standard error (200 replicates).

Estimator

All students 4A

Mean
Estimate

Sampling
St. Dev.

Mean
Estimate

Sampling
St. Dev.

G.M. -.00448 .03706 -.00670 .0386

M.S.E. .01979 .00029 .02321 .00038

V.C.M. -.00597 .03392 -.00625 .03631

VC.SE. .03599 .00364 .03848 .00428

VC.GM. .03851 .00375 .04059 .00446

JK.M. -.00436 .03725 -.00651 .03895

JK.SE. .03762 .00543 .03818 .00544

Key:
G.M. . . . ordinary (arithmetic) mean

M.S.E. . . . square root of the mean squared deviation from G.M. (the simple
random sampling estimator of the standard error)

V.C.M. . . . variance component (ML) estimator of the mean

VC.SE. . . . estimator of the asymptotic standard error of V.C.M.

VC.GM. . . . the estimator of the sampling standard deviation of G.M. given the
variance component model (4), A.

JK.M. . . . the jackknife estimator of the mean

JK.SE. . . . the jackknife estimator of the standard error for the mean

32
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Table. 5. Simulated sampling design of a 'lumpy' dataset.

Counts of students within schools (368 students from 98 schools). For

example, the second PSU of the stratum 2 has 3 schools in the dataset, with

6 students in one school and one each in the other two schools.

Stratum First PSU Second PSU

1 5 1

2 1 6 1 1

3 6 4 9 2
4 10 1 2 1 6
5 1 1 1 2 2 3 1
6 5 3 4
7 5 4 17
8 4 8 17 7 2 3
9 2 2

10 7 3 1 2
11 12 9 2 3 5
12 1 2 2
13 5 4 6
14 7 1

15 4 9 4 1

16 5
17 2 4 4
18 4 1 9
19 3 2 2 4 2
20 2 1 1 1
21 1 2
22 1 6
23 3 9 3
24 10
25 1 7 1 1 8
26 1 1

27 3 3 3 2
28 2
29 1 5 1

30 1 5

r)
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Table 6. Results of the simulation study for 'lumpy' data.

Sampling means and standard deviations for various estimators of the mean

and of the standard errors (200 replicates).

Estimator

368 Students
98 Schools

329 Students
109 Schools

284 Students
85 Schools

Mean
Estimate

Sampling
St. Dev.

Mean
Estimate

Sampling
St. Dev.

Mean
Estimate

Sampling
St. Dev.

G.M. .00273 .07478 .00966 .07975 -.00007 .07892

M.S.E. .05601 .00215 .05913 .00237 .06358 .00268

V.C.M. -.00078 .07110 .00838 .07467 -.00048 .07599

VC.SE. .07301 .00649 .07480 .00754 .08159 .00768

VC.S2. .00537 .00096 .00565 .00114 .00672 .00127

VC.GM. .07740 .00885 .08058 .01077 .08636 .01034

JK.M. .00268 .07498 .00993 .07923 .00022 .07930

JK.SE. .07603 .01396 .07910 .01751 .08286 .01283

JK.S2 .00598 .00223 .00656 .00315 .00703 .00220

JK.DF. 14.4 8.7 20.4

VC.DF. 62.2 48.7 56.3

Key: See Table 4, and:

VC.S2 . . . estimator of the asymptotic variance of V.C.M.

JK.S2. . . . the jackknife estimator of the variance of JK.M.

JK.DF. . . . the estimated number of degrees of freedom of the jackknife estimator
of the sampling variance

VC.DF . . . the estimated number of degrees of freedom of the variance
component estimator of the sampling variance
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